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Abstract

This paper presents a uscful concept for decision analysis --

the value of information givem flexibility.

An exploration is made intc the impact of decision flexibility
on the value of information. The usefulness of calculating the
value of information under various assumptions concerning decision
flexibility is illustrated with a simple economic example. An
upper limit to the value of infermation given flexibility is the
expected value of perfect information given perfect flexibility
(EVPIGPF). By approximating an arbitrary smooth value function with
a quadratic equation, first order characteristics of the EVPIGPF are
identified. Finally, it is shown that the technique of proximal
decision analysis may be expanded to provide a simplified estimation
of the EVPIGPF for large-scale decision problems.
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1. Introduction

The well-known "value of information" concept of decision
analysis provides a logical technique for placing a dollar value on
the resolution of uncertainty. Normally this value is considered to
be a constant against which the cost of obtaining information is
compared. More generally, the value one places on information will
depend upon one's assumed flexibility to make use of the information.
The more flexible one's decisions are, the more valuable is informa-

tion.

This paper presents a definition of decision flexibility for

the science of decision analysis. A simple economic example is used
to demonstrate the usefulness of calculating the value of information
under various assumptions concerning decision flexibility. Howard

[ 3] has suggested "proximal decision analysis" as a technique for
analyzing large-scale decision problems when siates and decisions can
be represented by continyous vectors. The proximal model is used to
analyze the effect of various problem characteristics on the value

of information given flexibility.

2. A Definition of Decision Flexibility

Th2 concept of flexibility has occasionally cropped up in
micro-economic literature on the theory of the firm. For several
approaches see Ref. [1, 4, 7, 8 9]. For the purposes of
decision analysis it is conveniént to take a different approach.

We view the flexibility of a given decision variable to be deter-

mined by the size of the choice set associated with that variable.




Let D and D' be two possible sets of feasible alternatives for

a decision d and suppose that D 1is a proper subset of D'.

Then the decision d is said to be more flexible in the case of the !
feasible set D' than in the case of the feasible set D. Roughly

speaking, the larger the choice set -- that is, the more alternatives

that are available for a decision -- the greater is the decision

flexibility.

3. Value of Flexibility

Notation and Basic Decision Model

When dealing with the uncertainty in a decision, it is frequently
important to state explicitly the information upon whick a probability
assessment is based. Inferential notation is useful for this purpose.
Following [2 ], if x 1s a random variable, the symbol {xlS}
denotes the probability density function of x given the state of
knowledge 8 . The expectation of x based on 8 1is written <x|s>.
A special state of knowledge is the total prior experience available
at the beginning of the problem. The total prior experience is
denoted by & .

We envision a decision model of the form shown in Figure 3.1 and
discussed in Ref. [ 21. Problem variables have been divided into
those under the control of the decision maker -- decision variables

dl""dm -- and those not under his control - state variables sl,..,s .
n

The function v(s,d) represents the decision maker's value model. For

specified values of s and d it assigns a scalar value v. State ?
variables are uncertain and described by a distribution [5‘8} s

For any given decision vector d a profit lottery {V'QJS] is

produced on outcome value. The decision maker's preferences interact

with this lottery so as to produce a utility measure U({vlg,ﬂ])-

The objective for the decision maker is to choose from the feasible

decision set D the decision vector d which produces the highest
utility measure. ]
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The Value of Information Given Flexibility

1ae value of information given flexibility measures the walue
to the decision maker, in ecoromic vnits, of obtaining a given amourt
of information together with a given amount of decision flexibiiity.
An upper limit to this quantity, the expected value of perfect infor-
mation given perfect flexibility (EVPIGPF), may be calculated.

As a base case consider the decision problem in which the decision
maker must set d prior to learning the state variable outcomes s .
Now consider the problem in which the decision maker may delay the_
setting of the j'th decision variable until after he Jearns the
outcome of the 1'th state variable. All other decisions, however,
must be set prior to learning any state variable outcomes. We define
the value of perfect information on Si given perfect flexibility

on d as the maximum number of economic units the decision maker

would be willing to pay to change the structure of his decision from
that of the first problem considered to that of tnc second. The
flexibility is said to he perfect because it is assumed that receipt
of the information does not restrict in any way the feasible decision

set assoclated with the flexible decision variable. !

The EVPIGPF is similar to, but more complete than, the concept
of expected value of perfect intormation (EVPI). Whereas EVPI
measures the value of perfect information under the assumption that
all decision variables may be adjusted to utilize the information,
the EVPIGPF explicitly states which decision variables may be

adjusted in response to what information. In a real system it may
be costly or impossiblr to maintain flexibility on all decisions
while awaiting the arrival of some piece of information. By
comparing the costs of maintaining flexibility with th: EVPIGPF,

the decision maker has a method for deciding which decisions ought
to be kept flexible and for vhich it is more profitable to eliminate
flexibility. We illustrate this use with a simple econcmic

example. 4
:




Example: The Entrepreneur's Price-Quantity Decision

An entrepreneur must Jecide upon a price and quantity for his
product. He is uncertain about the total cost c per item but feels
that it may be represented by the uniform distribution of Fig. 3,2,

He knows that the demand for his product will be a decreasing function
of hi price, but for any given price he is uncertain as to the exact
quancity of his product demanded. For this reason he hypothesizes the

following functional form for demand x :

x =2
P

b-e, (3.1)

where

x = demand (in thousands of units),

p = price (in thousands of dollars),

a,b = parameters of the demand curve, and

e = a randcm variable independent of ¢ and uniformly

distributed from zero to one.

Figure 3.3 shows the probability density for e and the demand

curve x(p) .

Further let

q = quantity produced (in thousands of units)
v = net profit (in millions of dollars) .
Then,

a a
—~ - b - ¢e) - if —-b-e <«
1>(p ) cq , P q

v(p,4,c,e) = { (3.2)

(p-¢)a, if f-b-e >q

B

T e oy




C|C} ¢ = TOTAL COST PER ITEM
’ {in thousands of dollars)

FIGURE 3.2 PROBABILITY DENSITY FUNCTION
FOR PRODUCTION COST IN THE
ENTREPRENEUR’S DECISION
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FIGURE 3.3 THE DEMAND CURVE AND THE PROBABILITY DENSITY FUNCTION FOR THE
DEMAND PARAMETER e IN THE ENTREPRENEUR’'S DECISION
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We wish to determine our entrepreneur's expected net profit and
the value to him of using various perfect information - perfect
flexibility structures. In other words, we would like to know how
much it is worth to the entrepreneur to obtain perfect information
on various state variabies if he uses that information when setting
various decision variables. For example, ccnsider the value to the
decision maker of obtaining perfect information on the demand parameter
e for the purpose of setting his production quantity q . This value
is obtained by calculati»g tle increment to expected profit rroduced

by clairvoyance on e given flexibility on q :

<v|Cqu,e>. = <v|8> = max j max I v {cle}l {ele}

p ¢ q c
- max max I J“’ fele} fcle} (3.3)
P c c e

In all there are 3x3=9 possible perfect information~flerxibility
structures. The computations have been performed and are summarized

in Table 3.1 for particular parameter values of a=2.25 and b=0.5.

Observe that the expected value of the entrepreneurial venture
is half a million dollars and is obtained through an optimal decision
strategy of setting price at $1,000 and quantity at 1,250 units. The
entries in the Table --V s P* , and q* -- respectively denote the
value of the information flexibility structure and the optimal decision
strategy appropriate to the structure corresponding to a given
location in the Table. For example, if it were possible for our
entrepreneur to pick a price, learn the demand parameter e » and then

set his quantity, he could expect te incresse his profits by $128,680.

To do this he would set price at 1.061 thousand dollars, conduct his
estimation of e , and then set quantity at 1.621 - e thousands of

p units.

The entries VCF thus indicate the value to the decision maker

of applying additional information to the various decisions that make

up his problem. We observe that the greatest increase in profit
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is expected if perfect information is obtsined on both uncertain
variables and that information is used to adjust both decision vari-
ables. Of the two pieces o” infcrmation ¢ and e , e is more valuable
regardless of the flexibility assumed on the decision variahles. The

relative value of flexibility on the two decisions, however, depends

on the information to be received. Flexibility on quantity is more
valuable if the entrepreneur expects to learn costs., Flexibility on i
price is more valuable if the entrepreneur expects to learn demand or

if he expects to learn both costs and demand.

1vpically, ¢ large number of information gathering and flexibility

preserving schemes are availatle to the decision maker. MNormally such
schemes will provide imperfect rather than perfect information and less

than complete flexibility. EVPIGPF's provide an upper bound to the

value of such schemes and, therefore, allow the decision maker to
dismiss immediately those whose costs exceed these Yhourds. Suppose that
after considering various information gathering and cdecision deleyirg
schemes, the entrepreneur construcis a table of proposals and costs as
illustrated in Table 3.2. Proposals 1 and 2 can be eliminated from
further consideration as their costs exceed thLe ccrresponding EVPIGPF's.
Schemes 4 & 6 appear to be of dubious value while schenes 2, 7 and 9

are among those that appear to deserve further consideration.

Knowledge of EVPIGPF's can generate insight that is not provided
bv EVPI's alone. For example, observe from Table 3.1 that the value
of clairvoyance on costs given flexibility on price is zero, but the
value of clairvoyance on costs given flexibility on price and quantity
is $139,416. Informa-ion about costs is useful for setting price but
only if that inf.rmzticn 1s used for setting quantity as well. Once

quantity has been fixed price must be set so as to clear the inventory,

and costs are no longer a consideration. 1Insight may also be provided
on decision timing. If information on the demand parameter e 1is

purchased, virtually all the usefulness of the information, $151,639

1

worth, can be obtained using it only to set price. Delaying produc-

tion until after thLis information becomes available will orly Lie worth
on «cditional $285 !




000°091$ = 380D

‘uni ad£3
-o30ad pur TefIuajod Jay
-1Fm jo sysLleur 3ONpucy

5

v00*0ST-0ZT$ = 380D

*uor3anpoad TIn3 o3 Suyl
-31Tumod 2103jaq uni adil

=03j0ad pur aofad pexy]
' Apnis jajiem 3joNpuo)

000°0L-C3% = 380D

*E3ITUN
paotad Arsnulaea jo 3833
Buypjayaew ﬂdmuu J2npuoy

000°00T$ = 380D

*ao7ad

jo Bujyzyorrgnd a>ueape
de7ep puer Jefiualod Jay
-iFW JO STSATERUER 12NpuUO)

000°06-09% = 380)

*as>pad
pax1] 1F PUPWAP IIBW[IS
031 Apnis jajiFm JOonpuo)

000°00T$ = 350D

*s3Tun pas>pad

A1snofaea jo Teriuajod
jajaem jo sysLTEUE Jonp
-uod *A3viuenb o3 3ITmmo)

9 S_ h
§1802 aTqEla EaTes
000 06-C9% = 380) =ADJ3IUOU Ul = 3IE0) 1507 W01] = 3I80)
000‘09-5%$ 000°0%-5$
T Tad ‘uojionp "aTqETTRAE ’

jo Sugyzyojiqnd aouewapw
Aelap pue 5318500 2IFPWIISI
01 uni adfjojoad jonpuoy

g

-o0ad 1In3 o1 Suyizjumon
210j9q ulSOD IIPWIISD
03 uni ad{jojcad jonpuon

/A

§] 1802 JO ajewylsa
poo8 Tr3un 3>1ad jo Bug
-2¥311qnd 2oueape Aefag

§

$3150) PIIEWIIST IT3AY] PUB UOTISIO3, 5,anauaadaizug ayl 103

sawayds Juyaiasaag AITTIqIxa[g-Burasyies uorjewaoju] pasodoag

¢t d18vl

T T

= (’(a,)-

T ——



E
4
:

4. The Quadratic Decision Problem

In this section we shall obtain an explicit expression for the
value of perfect informatiun given perfect flexibility for a
quadratic decision problem. A quadratic decision problem is defined
as the basic decision model of Fig. 3.1 with the following additional

assumptions:

1. The decision variables d are unconstrained.

2. The decision maker's value function v(s,d) is a
quadratic funcf.ion in the si and d such that for
every 8 , v{(s,d) has a unique maximum with respect

to d.

3. The decision maker's utility function is a linear function

of value.
The results will be shown to have a practical use in § 5.
By assumptior (2),
vEed ma+bs+laVatg'Tderatgdod, )
with @ negative definite. Since we are interested in relative values,
we may ignore the first three terms in (4.1). Further, by assuming
that decision settings are measured as deviations from the best

deterministic decision and state variables are measured from their

mean values, there is no loss in generality if we take
v(s,d) =s'Td + ld'qd (4.2)
with E(s) = 0 .
To characterize the various structures we use the following
notation. et N = {1,...,n} and M = {1,...,m} be

the respective sets of state and decision variable indices. Define
IC N tc be the set of indices of those state variables upon which

information 1s to be obtained, and let JC M denoie the indices of




decision variables for which flexibility is available.

T and J will

denote the complements within N and M of the sets I and J re-

spectively. Cs_Fd_ will denote the infor.ation structure within which

1J

the decision maker has clairvoyance on state variables 51 s

and flexibility on decision variables dj s, J €eJ.

(t
i jeJ 1
andj 3 is in J , and sim larly define TNJ " QJJ ’ ij » etc.

and QJJ will be taken to mean the transpose of TNJ and the inverse
of QJJ, respectively. Also, let s. denote the vector of those components

23 :

S

i

)

4

iel

For a siven structure Cs_Fd let T denote the matrix

T J° 1)

of those elements t of T guch that 1 1is in I

iel

1

of s such that i ¢ I , and similarly define d; and

Then, subject to the various assumptions made above, we have the

optimal decision strategy d* 1is given by
- -1
95 = - Qg% Q0 (TIJ JJQJJ PEGD

ik -1,
’(QJJ'QJJQJJQJJ_) (77579530535 JJ IJ)EQ‘
QJJ[TIJ-I + T [5Gy ]

and the corresponding expected value of the structure is

1 .
d’CsIFdJ je>= -3 tr“cc{"NJ 3TN )

a1 -1
+(Pp3-T5,Q_ 5037 Q337,097 (T Q?JJQJJ TPEGPEGE )}

where x = E(s|s;)

'
TNJ

THEQREI: Tor any information-flexibility structure CsIFdJ , the

(4.3)

(4.4)

(4.5)

|
i
i
j




PROOF: Equations (4.3), (4.4), and (4.5) follovw from the evaluation of

v|Cs;Fd 6>~ <v|e> (4.6)
where
<v|e> = max E(v) = max (-;gq d) =0, 4.7)
d

because Q 1is negative definite, and

<v|CsIFdJ,8> = mgx E[m:x E(v[EI)]
=J =

1. 1
= max E{max[x'T., .d #x'T.. .d 4= d + = g4
i { 3 [x" Ty yd j4x" Ty 54 5 29,0039, 83%5,4; + 2 33%n41; -

=J -J
(4.8)
A detailed Aerivation is cortained in Ref, [5].
COROLLARY 1: Under the structure (3sIFdJ

=0, (4.9)
a* = g 11’ x (4.10)

=J JI'NJ °? *
<« le> = - Strace{T, Q711! 2(xx") (4.11)

Cs Fd, 2 NJJI NS

if any of the following conditions hold:
(a) EQC-I-) =0
() J=29 (Coaplete flexibility)

(c) IT=¢ (Complete information) .




""0LLARY 2: Under the structure CSIFd

SRl < J
L‘j. -0, (4.12)
* -1,
| 2y = QT8 (4.13)
« le> = - itrace : Q_IT. (s.s)) (4.14)
Cr Fd; prrace{ly QT B(ssp)p :

if any of the following conditions hold:
(3) % =0

(b) g = [0]

(c) E(EI) =0 and TTJ = [0] .

Additivity Characteristics of the EVPIGPF

In the Fntrepreneur's Decizion of {3 the reader may observe that
the valu. of simultaneous information on ¢ and e does not equal the
sum of the value of information on ¢ and the value of information on
e . Similary, the value of simultaneous flexibility on p and q
| does not equal the sum of the value of flexibility on p and the value

of flexibility on q . Analysis of the quadratic decision problem
allows us to explore the first order additivity characteristics of the
| EVPIGPF., For the following two corollaries we assume in addition that
the conditional expectation of s 1is a linear function of the observable

state variables.

COROLLARY 3: Suppose the random variables composing the vector 1
upon which clairvoyance is available may be partitioned into two

vecters S.q and 51, that are independent. Then

<~ le> = <« le>+ & le> . (4.15)
Cs FdJ Cs FdJ CSIZFdJ

1 I1

PROOF: By assumption, x = E(§[§I) 2 Q§I for some matrix D . Denot-

ing the covariance matrix of s. by C (4.11) becomes

I 11 °’

- -l t -1
<NCSIFdJ|C> - 2trace{? T JQJJTNJDCII} 5 (4.16)

|




For convenience we assume that the variables have been ordered
so that

2n

21

The independence of s and s implies

I1 =12

c 0
Cpy = Iin . (4.18)

0 Cpopy

The proof follows by algebraic substitution.

We say that decision vectors gdl and gdz do not interact if the

value function may be expressed

vGeidyy dppady) = viidyyady) + vylsidpdy) - (419

COROLLARY 4:

vector d

Suppose the decision variables composing the decision

3 for which flexibility is available may be partitioned

into two vectors d and d

n 32 which do not interact. Then

«~ le>= les+ le> . (4.20)
Cs Fd, Cs Fd Cs Fd

PROOF: For convenience we assume decision variables are crdered so

that

e
n
o

4, . (4.21)
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For the quadratic value function, the non-interaction assumption

means .-hat the matrix QJJ has the diagonal form

Q 0
J131
Q= . (4.22)

0 Q3
Equation (4.26) foilows bty direct substitution into (4.16).

The results indicate that the first order additivity or non-additivity
of the value of information is determined by state variable correla-
tion. To a first order approximation, if two pieces of information
are uncorrelated, then the value of obtaining that information simul-
taneously equals the sum of the values of receiving each item of
informacion by itself. Similarlv, the first order deterrdnant of the
additivity or non-additivity of the value of flexibility is decision
variable interaction. 1If the value function is additive in two
decision vectors, then, to first order, the value of simultaneously
obtaining flexibility on both decision vectors will equal tte sum of
the values of obtaining flexibility on each vector individually.

Figures 4.1 and 4.2 illustrate these results for the special
case of a four-variable quadratic decision with value function
2
2 + 2qd1d2 + tusld1 + tlzsld2 + t21s2d1 + tzzszd2

(4.2))

2
v(sl,sz,dl,dz) = d1 -d

and normally distributed state variables. Figure 4.1 shows how the sign
of Q’lcslstdld298> = <V|C51Fd1d2’e‘ = <\I|C52Fd1d2,8> depends on

correlation P and interactions q . As we might expect, if correla-
tion is high enough the sum of the values of individual information will
exceed the value of joint information. Figure 4.2 shows the sign of

<v|Cslstd1d2,6> - <w|Cslstd1,8> - <v|Cslst02,€> as a function of p

and q . If decision variable interaction is high enough, we can expect

the value of joint flexibility to exceed the sum of the values of
individual flexibility.
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5. Proximal Analysis

The computational difficulty of performing tiie value of informa-
tion given flexibility calculations gives impetus to a search for
simplifying approximations. In this section we show that under certain
conditions an approximation to the expected value of perfect informa-
tion given perfect flexibility may be obtained by aprlying sensitivity
analysis to the decision prnblem's deterministic value model. The

technique 1s an extension to Howard's proximal decision model [3 ] .

In proximal decision analysis a quadratic equation in the first
two moments of g 18 used to approximate the optimal decision
strategy. Following Howard and Ric2 [¢ ] we expand v(s,d) in a
3 second order Taylor series about the prior mean E and the optimum

AN
deterministic decision d . We obtain Eq. (4.1) with

-Bv
be __ ’ (5.1)
N @,@]
= 2 -
oV
W= - 3 (So 2)
08084 @,g)_l
T = v ] (5.3)
_asiadj G’—a)- =
= .9 A
Q= | 5355 - . (5.4)
i°31(s,d)_

B a] -0 . (5.9)
(E:))

=7 Py
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Cpen- and furtially Closed-Loon Sengitivities

Let the state and decision variable settings be incremented by

amounts & and M from s and _a: respectively, then the

dpproximate increase in v , denoted Av , 1is given by

[

1
bv = bihs +5 as'Was + 4s'Tad +5 ad'Qyd (5.6)
We wish to find the open-loop sensitivity of v to changes

in state variables si with 1 belonging to some index set I .

The result 1s obtained from (5.6) with ad =0 , bsy = 0, k¢1I,

' 1 '
bvoy = bplsy +3 MsgWypelsy - (5.7)

Next we caiculate the partially closed-loop sensitivity in
which the only decision variables that may be adjusted are those d

with j 1n an index set J ., Putting Qgi and 493 equal to zero in
(5.6) yields

1 '
v = blas. + = ps'w ! 1
28yt A5V lsy 4 sgTopady 45 M0 N (5.%)

Setting the gradient with respect to QJ equal to zero, we get an ex-
|

pression showing how the flexible decision variables arc optimally ad-

justed in response to changes in state variables: i
* -1
My = -QpTpghey - (5.9

Substituting this expression into (5.8) gives the partially closed

i e e

loop sensitivity of outcome value to state variable changes.

"Lt s

| AV . = boas +'l s 2 T Q
: el " 2rl8y v AS{Mrplsr - ABrtiast 1o (5.10)

n———

s ’ ~
- s

open-loop sensitivity effect of compensation
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We see, in analogy with Howard's results [3, Equation 7.4], that the
partially closed-loop sensitivity is composed of terms representing
the open-loop sensitivity to state variables,plus terms that show the

effect of compensation.

The Expected Value of Detsrmipistic Compensation

Subtracting (5.7) from (5.10) and taking the expectation with
respect to the marginal probability distribution of sI, we obtain

an expressior r the expected value of deterministic compensation,

- 1
Veomp v~ = 7 BT QT ) - - FteacelT QT R Caaep]

(5.11)

A comparison with (4,629) shows that (5.11) is exactly the expected
value of perfect information on §; given perfect flexibility on d,
for an expected value decision maker with a quadratic value function if

any of the conditions of Corollary 2 are satisfied.

Now suppose that all state variables are adjusted in the sensitiv-

ity calculations., The cumpensation function becomes

vcomp(éé) hs' TNJ JJ NJAS ’ (hha)
If the function E(4§|Q§1) is available, the compound function
=1
VeomplEC85|851) ] = E(as" | a5 )Ty @) T\ ECas |s)) (5.13)
may be f. med. Taking the expectation of (5.13) yieuds
|€> = E[E(4s | 45,) Ty JQJJ NJB(AS|A§I)] : (5.14)

which is the expected value of perfect information on Sy given per-



fect flexibility on d; for an expected value decision maker with a
quadratic value function if any of the conditions of Corollary 1 are
satisfied.

», 4 sitiv

Howard (3, Appendix B] gives a method ior numerically evaluating
b,¥, T, Q, and various conditional and uncondi:ional covariance
matrices for a complicated, many-variable, smooth value function.
Hence, the proximal model and the theorem and cu:zollaries of § 4
provide a means for obtaining an approximation to the expected value

of information given flexibility.

The above results, however, show that under certain conditions a
simpler procedure may be applied. For the purpose of illustration,
assume that the value functicn for the decision model contains two
state variables and two decision variables. We wish to estimate the

value of perfect information on s given perfect flexibility on d
1

For the first calculation we shall ignore the effect that knowledge of

5y has on the 2stimaticn of Sy - The procedure consists of :

1. evaluating deterministic open-loop sensitivity to

changes in the observable state variable Sy »

2. evaluating deterministic partially closed-loop
sensitivity ( d2 continuously optimized) to changes

in 8y »

3. calculating the difference in these two functionmec,

vcomp(Asl) ,

4. determining the expectaticn of v .
comp

If knowledge of $1 impacts the decision through its effe:t on

the estimation of Sy » this may be included in the approximation using

the following procedure:

1. evaluate deterministic open-ioop joint sensitivity

to changes in 4 and s

2 1]
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2 evaluate deterministic partially closed-locp joint

sensitivity ( d2 continuously optimized) to changes

in 8y and 5y >

3. calculate the difference in these two functions,

Veomp (511 85))

4. determine E(A52|Asl) , the conditional mean of bs,
as 4 function of Asl 3

5. determine the expected value of vcomp[Asl,E(AszlAsl)] :

Implementa*tion of this procedure could be facilitated by approximating
Joint sensitivities with quadratic functions. A good approximestion may
pe expected provided that E[E(A52|Asl)] = 0 ; that is, the prlor ex-

pectation is a zero shift in tl- mean of the unobservable state variable.

1/
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